
© Lothar Thiele
Computer Engineering and Networks Laboratory

Embedded Systems
Lecture 3.
Hardware Software Architecture and Software Dev.
Memory, Clock, GPIOs.

Michele Magno

D-ITET center for project based learning

Source the Slides or adaptation from:
Embedded Systems. P. Marwedel

3 - 2

Exams information.

▪ 2h written exam

▪ One in February and one in August.

▪ They will be 3 main parts.

▪ Energy and latency linked with hardware-software interface

▪ Real time and scheduling

▪ Architecture Synthesis and systems overview.

▪ Labs will be not explicitly part of the exam but can help to understand better the
questions and perform.

▪ Exercise

▪ By the 31.10 home work with some more exercise will be provided as home work.

▪ By end of year more home work will be given for practice before the exam

▪ Previous years exams are useful for training

▪ Especially last year one.

3 - 3

Do you Remember ?

• Variety of possibility for embedded processing

• CPU has an instruction set.

• Different architecture according to the bus

• According to the architecture we can run more fast or less fast a task

• Energy is different than power Possible exam exercise!

• Different architecture for different execution time

• Frequency affect the time and the energy

• Parallel processing can affect both

• ARM processors

• What we will use as commodity platform for the lab?

3 - 4

Where we are …

1. Introduction to Embedded Systems

2. Software Development

3. Hardware-Software Interface

4. Programming Paradigms

5. Embedded Operating Systems

6. Real-time Scheduling

7. Shared Resources

8. Hardware Components

9. Power and Energy

Software

Hardware

Hardware-
Software

Till End of
October

3 - 5

A recent architecture from ARM – CortexM33.

3 - 6

Where we are …

1. Introduction to Embedded Systems

2. Software Development

3. Hardware-Software Interface

4. Programming Paradigms

5. Embedded Operating Systems

6. Real-time Scheduling

7. Shared Resources

8. Hardware Components

9. Power and Energy

10. Architecture Synthesis

Software

Hardware

Hardware-
Software

3 - 7

Remember: Computer Engineering I

Compilation of a C program to machine language program:

textual representation
of instructions

binary representation
of instructions and data

3 - 8

Embedded Software Development

Compiler

Simulator

Debugger

Binary
Code

operating
system

FPGA

Flash

processor
micro-

RAM

Software Developer

Software
Source Code

previous
slide

sensors
actuators

HOST EMBEDDED SYSTEM

3 - 9

Software Development with MSP432 (ES-Lab)

host PC

Target Device

STM32U585

Pmod & Arduino

headers

32.768 kHz

crystal

User Interface
& Sensors

Micro-B USB

connector

Status LED

RGB

Debug MCU

STLINK-V3E

ESD

protection

LDO

5 V, 3.3 V, 2.8 V

Power, UART, SWD to target

bottom side

3 - 10

Software Development with MSP432 (ES-Lab)

host PC

bottom side

Target Device

STM32U585

Pmod & Arduino

headers

32.768 kHz

crystal

User Interface
& Sensors

Micro-B USB

connector

Status LED

RGB

Debug MCU

STLINK-V3E

ESD

protection

LDO

5 V, 3.3 V, 2.8 V

Power, UART, SWD to target

3 - 11

Software Development (ES-Lab)

Software development is nowadays usually done with the support of an IDE
(Integrated Debugger and Editor / Integrated Development Environment)

▪ edit and build the code

▪ debug and validate

Discovery

kit for IoT

3 - 12

Software Development (ES-Lab)

source code
file in C

assembly
code

relocatable
object file

object libraries
that are referenced
in the code

object libraries that
contain the operating
system (if any)

Linker command file that tells the linker
how to allocate memory and to stitch
the object files and libraries together.

report created by the linker describing
where the program and data sections
are located in memory.

the executable output file
that is loaded into flash
memory on the processor

target configuration file specifies

the connection to the target

(e.g. USB) and the target device

Discovery

kit for IoT

3 - 13

Software Development (ES-Lab)

source code
file in C

assembly
code

relocatable
object file

object libraries
that are referenced
in the code

object libraries that
contain the operating
system (if any)

Linker command file that tells the linker
how to allocate memory and to stitch
the object files and libraries together.

report created by the linker describing
where the program and data sections
are located in memory.

the executable output file
that is loaded into flash
memory on the processor

target configuration file specifies

the connection to the target

(e.g. USB) and the target device

3 - 14

Software Development (ES-Lab)

source code
file in C

assembly
code

relocatable
object file

object libraries
that are referenced
in the code

object libraries that
contain the operating
system (if any)

Linker command file that tells the linker
how to allocate memory and to stitch
the object files and libraries together.

report created by the linker describing
where the program and data sections
are located in memory.

the executable output file
that is loaded into flash
memory on the processor

target configuration file specifies

the connection to the target

(e.g. USB) and the target device

3 - 15

Software Development (ES-Lab)

source code
file in C

assembly
code

relocatable
object file

object libraries
that are referenced
in the code

object libraries that
contain the operating
system (if any)

Linker command file that tells the linker
how to allocate memory and to stitch
the object files and libraries together.

report created by the linker describing
where the program and data sections
are located in memory.

Discovery

kit for IoT

the executable output file
that is loaded into flash
memory on the processor

target configuration file specifies

the connection to the target

(e.g. USB) and the target device

3 - 16

Storage

3 - 17

Remember … ?

3 - 18

MSP432P401R (Last year lab - ES-Lab)

3 - 19

von Neumann or Harvard ? Why?

3 - 20

Storage
Registers/SRAM / DRAM / Flash

3 - 21

Memory Hierarchies and persistent and volatile
memory

▪ Processor registers can be seen as the fastest level in the memory hierarchy, with only a

limited capacity of at most a few hundred words.

▪ The working memory (or main memory) of computer systems implements the storage

implied by processor memory addresses. Usually it has a capacity between a few megabytes

and some gigabytes and is volatile.

▪ Hard drive or Flash

▪ Persistent

Processor

•L
a

te
n

c
y

Registers-L1 Cache

L2 Cache

L3 Cache

Main Memory

Hard Drive or Flash

Capacity (KB, MB, GB, TB)

3 - 22

Static Random Access Memory (SRAM)
▪ Single bit is stored in a bi-stable circuit

▪ Static Random Access Memory is used for

▪ caches

▪ register file within the processor core

▪ small but fast memories

▪ Read:

1. Pre-charge all bit-lines to average voltage

2. decode address (n+m bits)

3. select row of cells using 2n single-bit word lines (WL)

4. selected bit-cells drive all bit-lines BL (2m pairs)

5. sense difference between bit-line pairs and read out

▪ Write:

▪ select row and overwrite bit-lines using strong signals

1 0

01

3 - 23

Dynamic Random Access (DRAM)

Single bit is stored as a charge in a capacitor

▪ Bit cell loses charge when read, bit cell drains
over time

▪ Slower access than with SRAM due to small
storage capacity in comparison to capacity of
bit-line.

▪ Higher density than SRAM (1 vs. 6 transistors
per bit)

DRAMs require periodic refresh of charge

▪ Performed by the memory controller

▪ Refresh interval is tens of ms

▪ DRAM is unavailable during refresh

(RAS/CAS = row/column address select)

For reading and writing

3 - 24

DRAM – Typical Access Process

1. Bus Transmission 2. Precharge and Row Access

3 - 25

DRAM – Typical Access Process

3. Column Access 4. Data Transfer and Bus Transmission

3 - 26

Flash Memory

Electrically modifiable, non‐volatile storage

Principle of operation:

▪ Transistor with a second “floating” gate

▪ Floating gate can trap electrons

▪ This results in a detectable change in
threshold voltage

3 - 27

NAND and NOR Flash Memory

Fast random access

3 - 28

Example: Reading out NAND Flash

Selected word-line (WL) : Target voltage (Vtarget)

Unselected word-lines : Vread is high enough to have a low resistance in all
transistors in this row

3 - 29

Storage
Memory Map

3 - 30

Example: Memory Map in MSP432
(Example MCU last year ES-Lab)

Available memory:

▪ The processor used in the lab (MSP432P401R) has built in 256kB flash memory,
64kB SRAM and 32kB ROM (Read Only Memory).

Address space:

▪ The processor uses 32 bit addresses as all the ARM Cortex-M Microcontrollers.
Therefore, the addressable memory space is 4 GByte (= 232 Byte) as each memory
location corresponds to 1 Byte (for other ARM cortex-M4 usually is used 32 bits) .

▪ The address space is used to address the memories (reading and writing), to
address the peripheral units, and to have access to debug and trace information
(memory mapped microarchitecture).

▪ The address space is partitioned into zones, each one with a dedicated use. The
following is a simplified description to introduce the basic concepts.

3 - 31

Example: Memory Map in MSP432
(Example MCU last year ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number;
each digit
corresponds
to 4 bit

0011 1111 …. 1111
0010 0000 …. 0000

diff. = 0001 1111 …. 1111 →

229 different addresses

capacity = 229 Byte =
512 MByte

3FFF FFFF -

0x200 000 +

1

3 - 32

Example: Memory Map in MSP432
(Example MCU last year ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number;
each digit
corresponds
to 4 bit

0011 1111 …. 1111
0010 0000 …. 0000

…

…

diff. = 0001 1111 …. 1111 →

229 different addresses

capacity = 229 Byte =
512 MByte

from base address

3 - 33

Example: Memory Map in MSP432
(Example MCU last year ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number;
each digit
corresponds
to 4 bit

0011 1111 …. 1111
0010 0000 …. 0000

Schematic of LaunchPad as used in the Lab:

LED1 is connected to Port 1, Pin 0

How do we toggle LED1 in a C program?

diff. = 0001 1111 …. 1111 →

229 different addresses

capacity = 229 Byte =
512 MByte

3 - 34

Example: Memory Map in MSP432
(Example MCU last year ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number;
each digit
corresponds
to 4 bit

0011 1111 …. 1111
0010 0000 …. 0000

…

//declare p1out as a pointer to an 8Bit integer

volatile uint8_t* p1out;

//P1OUT should point to Port 1 where LED1 is connected

p1out = (uint8_t*) 0x40004C02;

//Toggle Bit 0 (Signal to which LED1 is connected)

*p1out = *p1out ^ 0x01;

Many necessary elements are missing in the
sketch below, in particular the configuration of
the port (input or output, pull up or pull down
resistors for input, drive strength for output).
See lab session.

diff. = 0001 1111 …. 1111 →

229 different addresses

capacity = 229 Byte =
512 MByte

^ : XOR

3 - 35

Example: Memory Map in MSP432
(Example MCU last year ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number;
each digit
corresponds
to 4 bit

0011 1111 …. 1111
0010 0000 …. 0000

• 0x3FFFF address difference = 4 * 216 different addresses →
256 kByte maximal data capacity for Flash Main Memory

• Used for program, data and non-volatile configuration.

diff. = 0001 1111 …. 1111 →

229 different addresses

capacity = 229 Byte =
512 MByte

3 - 36

Example: Memory Map in MSP432
(Example MCU last year ES-Lab)

Memory map:

hexadecimal
representation
of a 32 bit
binary number;
each digit
corresponds
to 4 bit

0011 1111 …. 1111
0010 0000 …. 0000

• 0x FFFF address difference = 216 different addresses →
64 kByte maximal data capacity for SRAM Region

• Used for program and data.

diff. = 0001 1111 …. 1111 →

229 different addresses

capacity = 229 Byte =
512 MByte

3 - 37

Program Counter (PC)
Points to the next instruction to be executed

Stack Pointer (SP)
Store the return addresses of subroutine calls and interrupts

Status Register (SR)
Source or destination register

CPU Internal Registers

3 - 38

Dedicated Registers

Dedicated Registers:

▪ Program Counter (PC):

▪ Points to the next instruction to be read from memory and executed by the CPU.

▪ Stack Pointer (SP):

▪ stack can be used by user to store data for later use (instructions: store by PUSH, retrieve
by POP);

▪ can be used by user or by compiler for subroutine parameters (PUSH, POP in calling
routine; addressed via offset calculation on stack pointer (SP) in called subroutine);

▪ used by subroutine calls to store the program counter value for return at subroutine's end
(RET).

▪ Status Register (SR):

▪ Stores status, control bits and system flags, updated automatically by the CPU.

3 - 39•39

General Purpose Registers
▪ General–Purpose Registers:

▪ The general-purpose registers are adequate to store
data registers, address pointers, or index values and
can be accessed with byte or word instructions.

▪ Used to execute arithmetical operations or to
read/write memory.

3 - 40

Example of MCU Architecture

•I/O Port•ADC - DAC

•USARTx•TIMERs•DMA

•Memory•Clock

•BUS

•CPU

•17/10/2022•Michele Magno •40

3 - 41

Clocks

◆ Fast Clocks CPU, Communications, Burst Processing

◆ Low-power RTC, Remote, Battery, Energy Harvesting

◆ Accurate Stable over ⁰/V, Communications, RTC, Sensors

◆ Failsafe Robust–keeps system running in case of failure

◆ Cheap … goes without saying …

… or some combination of these features?

•17/10/2022•Michele Magno •41

3 - 42

Is there a single clock in an embedded system?

Clock
Management
Unit

leakshort
2 VIfAVIfACVP ++= 

•Dynamic power

consumption

•Power due to short-

circuit current during

transition

•Power due to leakage

current

But execution time of a task at parity
of architecture is function of frequency

Trade-off energy vs latency
especially in real time constrain

3 - 43

STM32U5- Block Diagram (ES-LAB)

43•17/10/2022•Michele Magno •43

Frequency is

plaining an

important role

For

performance

and Power

3 - 44

STM32U5: Reset and Clock Controller. (ES-LAB)

•17/10/2022•Michele Magno •44

•A phase-locked loop or phase lock loop

(PLL) is a control system that generates

an output signal whose phase is related to

the phase of an input signal.

3 - 45

STL32F4: Simplify Clocks Tree
•To other PLL

•Clock

Generat

ors

•17/10/2022•Michele Magno •45

APB =
Advanced
Peripherals
Bus

•Advanced High-performance Bus (AHB)

Real time clock

3 - 46

Comparison MSI vs HSI

•17/10/2022•Michele Magno •46

3 - 47

Lets see what is out of the MCU! General purpose In/Out pins GPIOs

•17/10/2022•Michele Magno •47

3 - 48

General Purpose Input Out (GPIO): Theory

Each MCU pin can be used as a General Purpose digital input or
output.

•17/10/2022•Michele Magno •48

3 - 49

General Purpose Input Out (GPIO)

▪ Are used to control single pin devices (LEDS, Buttons, etc)

▪ First Hello World

▪ Are physically connected to other devices.

▪ Can have several functions

•17/10/2022•Michele Magno •49

3 - 50

▪ Input mode

▪ Floating

▪ Input wit pull-up/down

▪ Analog input mode

▪ Output mode

▪ Push-pull, open drain

GPIO operating modes

•17/10/2022•Michele Magno •50

3 - 51

LED2 schematic and MCU connection

3 - 52

Inside GPIOs

▪ Each pin is independent

▪ Ports (out) and Pins (in) are different!!!

•17/10/2022•Michele Magno •52

3 - 53
•17/10/2022•Michele Magno •53

3 - 54

UM2839 User manual (ES-LAB)

•17/10/2022•Michele Magno •54

3 - 55
•17/10/2022•Michele Magno •55

UM2839 section 7.1

3 - 56

What did you Learn?

▪ Compilation and deploying code on an embedded system

▪ Memory is crucial for MCU

▪ What are the registers for data but also for instructions

▪ Different type and architecture.

▪ Many clocks in a small device

▪ Frequency, latency, energy tradeoffs

▪ External world

▪ GPIO

