
© Lothar Thiele
Computer Engineering and Networks Laboratory

Embedded Systems
Lecture 4.
Hardware Software Architecture.
Interrupts and Serial interfaces.

Michele Magno

D-ITET center for project based learning

Credits: Philipp Mayer, Francesco Conti.

3 - 2

Where we are …

Till end of
October

1. Introduction to Embedded Systems

2. Software Development

3. Hardware-Software Interface

4. Programming Paradigms

5. Embedded Operating Systems

6. Real-time Scheduling

7. Shared Resources

8. Hardware Components

9. Power and Energy

10. Architecture Synthesis and
System Integration

Software

Hardware

Hardware-
Software

3 - 3

Do you Remember ?

• Memory

• SRAM, DRAM, Flash

• Addresses and value

• Memory map

• Clocks

• Many clocks

• Flexibility

• Energy and latency

• GPIO first peripherals going out.

3 - 4

Remember … ?

3 - 5

MSP432P401R (Last year lab - ES-Lab)

3 - 6

Today class will focus on

▪ Interrupts

▪ Input / Output

▪ Serial communication

▪ SPI

▪ I2C

▪ UART

▪ Link with the lab board

3 - 7

MSP432P401R (Last year lab - ES-Lab)

3 - 8

Interrupts

3 - 9

Typical application profile with Embedded systems

•Time

•Application phases:

• OFF – power is not applied to MCU

• STARTUP INITIALIZATION – MCU performs configuration (peripherals, clocks, …)

• Tperiod

• INACTIVE – MCU is in low power mode to reduce power consumption

• ACTIVE – MCU is in normal mode and performs tasks

•2

OFF
• STARTUP

INITIALIZATION

•IRQ

•ID
D

•IRQ

TASKS

•Process •ACTIVE

•INACTIVE

•Tperiod •Tperiod

TASKS

•ACTIV

E

•INACTIVE •INACTIV

E

3 - 10

‘Interrupt’ Defined

•From Wikipedia:

•A hardware interrupt is an electronic alerting signal sent to
the processor from an external device, either a part of the
[device, such as an internal peripheral] or an external
peripheral.

3 - 11

Waiting for an Event: Family Vacation

•Polling

•An engineering example...

•17/10/2022•Michele Magno •11

3 - 12

Waiting for an Event: Family Vacation

•Polling

•17/10/2022•Michele Magno •12

•Wake me up when we get there...

•Interrupts

•An engineering example...

3 - 13

Interrupts Help Support Ultra Low Power

•Only timers are running

•Very little CPU

effort required

•Lots of sleep time

◆ Keep CPU asleep (i.e. in Low Power Mode) while
waiting for event

◆ Interrupt ‘wakes up’ CPU when it’s required

 Another way to look at it is that interrupts
often cause a program state change

◆ Often, work can be done by peripherals, letting
CPU stay in low power mode (e.g. Gate Time)

•17/10/2022•Michele Magno •13

3 - 14

Waiting for an Event: Button Push

•100% CPU Load

•while(1) {

• // Polling GPIO button

• while

(GPIO_getInputPinValue()==1)

• GPIO_toggleOutputOnPin();

•}

•// GPIO button interrupt

•#Iterrupt servise routine

•__interrupt void rx (void){

• GPIO_toggleOutputOnPin();

•}

•> 0.1% CPU Load

•How interrupts can affect system design…

•Polling •Interrupts

•17/10/2022•Michele Magno •14

3 - 15

Interrupts

▪ A way to respond to an external event (i.e., flag being set)
without polling

How it works:

▪ H/W senses flag being set

▪ Automatically transfers control to s/w that “services” the
interrupt

▪ When done, H/W returns control to wherever it left off

Advantages:

▪ Transparent to user

▪ cleaner code

▪ μC doesn’t waste time polling

Main Prog

ISR

:

:

:

:

•RETI

•17/10/2022•Michele Magno •15

3 - 16

How do interrupts work?

Peripheral

2

Peripheral

3

Peripheral

4

Peripheral

1

➔ Interrupt

• Clear interrupt

•➔ Peripheral P sends int X

ACK P’s int X • Execute P’s X handler

•ACK P’s int X

Interrupt

controller

•ARM Cortex-M Has

•a separate controller for interrupts! WHY?

CPU

•Credits: Networked Embedded

Systems

•Sachin Katti

•17/10/2022•Michele Magno •16

3 - 17

Foreground / Background Scheduling
•main() {

•}

•while(1){

• background

• or

• Low Power Mode

•}

•//Init

•initGPIO();

•initClocks();

•...

ISR1
get data

process

•System Initialization

◆ The beginning part of main() is usually dedicated to setting up your system

•Background

◆ Most systems have an endless loop that runs ‘forever’ in the background

◆ In this case, ‘Background’ implies that it runs at a lower priority than
‘Foreground’

◆ In microcontrollers, the background loop often contains a Low Power Mode
command – this sleeps the CPU/System until an interrupt event wakes it up

•Foreground

◆ Interrupt Service Routine (ISR) runs in response to enabled hardware
interrupt

◆ These events may change modes in Background – such as waking the CPU out
of low-power mode

◆ ISR’s, by default, are not interruptible

◆ Some processing may be done in ISR, but it’s usually best to keep them shortISR2

set a flag

•17/10/2022•Michele Magno •17

3 - 18

Foreground / Background (States)

Foreground
(higher priority)

ISR1 ISR2 ISR2

Background main() main()

•(lower priority)

•17/10/2022•Michele Magno •18

3 - 19

Foreground
(higher priority)

ISR1 ISR2 ISR2

Background main() main()

•(lower priority)

τIRQ τRETI

The interrupt has a latency cost as everything

3 - 20

ARM Cortex-Mx / Nested Vector Interrupt Controller

The NVIC includes the following features:

▪ A large number of maskable interrupt channels

▪ Several programmable priority levels (4 bits of
interrupt priority are used)

▪ Pow-latency exception and interrupt handling (12
Cycles, can change with architecture!!!)

▪ Power management control

▪ Implementation of system control registers

3 - 21

Nested Vector Interrupt Controller

▪ Nested Interrupt: If an interrupt request
(IRQ) with higher priority is raised, it is served
first

3 - 22

EXTernal Interrupt (EXTI)

3 - 23

• We want to configure an external interrupt line.

• An EXTI line is configured to generate an interrupt on each falling edge.

• In the interrupt routine a led connected to a specific GPIO pin is toggled.

EXTI – Purpose

Press a Button
EXTI Interrupt

Request
EXTI Interrupt
service routine

3 - 24

EXTI module: from pin to NVIC

GPIOA_0

GPIOB_0

•GPIOI_0

•EXTI

• Channel 0

GPIOA_1

GPIOB_1

•GPIOI_1

•Channel 1

GPIOA_15

GPIOB_15

•GPIOI_15

•Channel 15

-M

NVIC•Exti_0

•Exti_1

•Exti_2

•Exti_3

•Exti_4

•Exti_9-5

•Exti_15-10

•Wakeup

PVD

RTC_Alarm USB OTG

FS Wkup

ETH Wkup USB OTG

HS Wkup

RTC Tamper

RTC Wkup

•Event

•Interrupt

•ENABLE

•DISABLE

•I
n

p
u

t
fl

o
a
ti

n
g

•PVD_IRQ

•RTC_IRQ

3 - 25

Functional Signal Flow
•SYSCFG

• remap the memory accessible in the code area

• manage the external interrupt line connection to the

GPIOs.

•EXTI

• Configure GPIO pin as a digital input

• Select the pin as the EXTInsource (in SYSCFG module)

• Enable interrupt to be requested when a flag is set by

the desired event (rising/falling edge)

• Clear the pending flag (to ignore any previous events)

•NVIC

• Enable interrupt: NVIC_EnableIRQ(IRQn);

• Set priority: NVIC_SetPriority(IRQn, priority);

• Clear pending status: NVIC_ClearPendingIRQ(IRQn);

• Initialize counters, pointers, global variables, etc.

• Enable CPU Interrupts:

Many steps clocked means
many clocks to be served

3 - 26

EXTI - Capabilities

▪ There are 16 EXTI lines
connected to GPIOs

▪ All pins with the same pin
number are connected on the
same EXTI line (eg. Pin_2 Port
A and Pin_2 Port C share the
same EXTI2)

▪ EXTI 16 – 22 are reserved for
RTC, USB etc…

3 - 27

Input and Output

3 - 28

Serial Interfaces: Sensors, Display, Radio etc.

https://www.google.com/imgres?imgurl=http://m.eleparts.co.kr/data/goods_old/shopimages/EPX/DCK/HR/e14_160504ea4bf506630396f14b7c2.jpg&imgrefurl=http://www.eleparts.co.kr/goods/view?no%3D2799843&docid=qoLGGbSSmilDIM&tbnid=_rKQAJZB90AOsM:&vet=1&w=213&h=200&client=firefox-b-ab&bih=830&biw=1474&ved=2ahUKEwiFgvLHu5zeAhVGbVAKHbPIBvgQxiAoA3oECAEQFw&iact=c&ictx=1

3 - 29
•29•Michele Magno •10/17/2022

D0

D1

D2

D3

D4

D5

D6

D7

•0 (MSB)

•1

•1

•0

•0

•0

•1

•1 (LSB)

D0

D1

D2

D3

D4

D5

D6

D7

•Transmitting side •Receiving side

•Parallel interface example

•DO
•0 1 1 1 0 0 0 1 1

•Receiving side

•(MSB) •(LSB)

•Transmitting side

•Serial interface example (LSB first)

•DI

Comparison between Parallel and Serial Communication

3 - 30

Comparison between Parallel and Serial Communication

•30•Michele Magno •10/17/2022

Characteristic Parallel Serial

Bus line One line per bit One line

Sequence All bits of one word simultaneously Sequence of bits

Transmission rate High Low

Bus length Short distances Short and long distances

Cost High Low

Critical characteristics Synchronization between the different

bits is demanding

Asynchronous transmission needs start and

stop bits

Synchronous transmission needs some

other synchronization

3 - 31

MCU Interfaces

▪ Digital, GPIOs

▪ Several protocols for inter-chip communication

▪ Very often, a processor needs to exchange information with other processors or
devices. To satisfy various needs, there exists many different communication
protocols, such as

▪ UART (Universal Asynchronous Receiver-Transmitter)

▪ SPI (Serial Peripheral Interface Bus)

▪ I2C (Inter-Integrated Circuit)

▪ USB (Universal Serial Bus)

▪ As the principles are similar, we will just explain a representative of an
asynchronous protocol (UART, no shared clock signal between sender and
receiver) and one of a synchronous protocol (SPI , shared clock signal).

•31•Michele Magno •10/17/2022

3 - 32

Serial Interface Standards

3 - 33

Remember?
low power CPU

• enabling power to the rest of the system

• battery charging and voltage
measurement

• wireless radio (boot and operate)

• detect and check expansion boards

higher performance CPU

• sensor reading and motor control

• flight control

• telemetry (including the battery voltage)

• additional user development

• USB connection

UART:

• communication protocol (Universal
Asynchronous Receiver/Transmitter)

• exchange of data packets to and from
interfaces (wireless, USB)

I2C – Inter-Integrated Circuit Bus

3 - 35

I2C: Inter-Integrated Circuit Bus - 1

▪ Usually pronounced “I-Squared-C”

▪ Introduced by Philips (now NXP Semiconductors) in 1982

▪ Used for communication with external peripherals, for example:

▪ EEPROMs

▪ thermal sensors

▪ real-time clocks

▪ Also used as a control interface for signal processing devices with separate data
interfaces, for example:

▪ radio frequency tuners

▪ video decoders and encoders

▪ audio processors

•35•Michele Magno •10/17/2022

3 - 36

I2C: Inter-Integrated Circuit Bus - 2

▪ Three supported speed modes:

▪ slow (under 100 Kbps)

▪ fast (400 Kbps)

▪ high-speed (3.4 Mbps) – in I2C v.2.0

▪ Maximum inter-IC distance of about 3 meters

▪ (for moderate speeds, less for high-speed)

▪ Can support multi-master mode

▪ For complex applications

▪ Communication is always started by a master, both in single-master and multi-master mode

▪ Half-duplex synchronous communication scheme

▪ the master of the communication generates the clock (SCL) on which data (SDA) is
synchronized

•36•Michele Magno •10/17/2022

Master Slave 1

Slave n

•SDA

•SCL

3 - 37

I2C: Inter-Integrated Circuit Bus - 3

▪ Based on two lines:

▪ SCL (serial clock)

▪ SDA (serial data)

• Pull-Up resistors, Pull-Down by open-drain drivers
• Wired-AND: if any driver pulls down, the line is low (avoids short circuits)

• Any module on the bus can act as master, slave or both
• typical case: MCU is the master, peripherals/sensors are slaves

3 - 38

I2C: Inter-Integrated Circuit Bus - 3

▪ Based on two lines:

▪ SCL (serial clock)

▪ SDA (serial data)

• Pull-Up resistors, Pull-Down by open-drain drivers
• Wired-AND: if any driver pulls down, the line is low (avoids short circuits)

• Any module on the bus can act as master, slave or both
• typical case: MCU is the master, peripherals/sensors are slaves

•!

3 - 39

▪ In idle, both SCL and SDA are pulled-up to 1

I2C: Interface Protocol

3 - 40

1. To start the communication, the master:
• asserts the start bit (SDA 1→0 transition while SCL is still 1)

• then, it starts generating the SCL clock

• except for the start and stop bits, SDA transitions only when SCL is 0

I2C: Interface Protocol

3 - 41

2. The master transmits the slave address:

▪ broadcasted to all devices on the I2C bus

▪ used to select the target slave

▪ either 7 bits or 10 bits (newer devices – 7 bits address space is small!)

▪ in the example, the address is 7’b1000001

I2C: Interface Protocol

3 - 42

3. The master transmits a direction bit:

▪ a 0 for master → slave (write) transfer

▪ a 1 for slave → master (read) transfer

▪ in the example, suppose a write transfer

I2C: Interface Protocol

3 - 43

4. The slave then acknowledges reception:

▪ by driving SDA to 0

▪ if not acknowledged, the transaction must be repeated by the
master

I2C: Interface Protocol

3 - 44

5. The master transmits its data payload:

▪ each payload packet is 8 bits

▪ there might be more than one packet, depending on
application

▪ in the example, data payload is 8’b00110100

I2C: Interface Protocol

3 - 45

6. The slave acknowledges reception of the data packet:

▪ 1 ack bit every 8 payload bits

▪ slave must acknowledge each packet

I2C: Interface Protocol

3 - 46

7. At the end of the transfer, the master transmits a stop bit:

▪ first, it sets SDA to 0

▪ then it releases SCL (i.e. it lets it go to 1)

▪ finally, it releases SDA which also goes to 1

I2C: Interface Protocol

3 - 47

Reads work similarly, but data transfer – ack roles are reversed:

▪ the slave drives SDA when transmitting the data byte

▪ the master acknowledges the transfer

I2C: Interface Protocol

3 - 48

Slave can ask for more time to process a bit by clock stretching:

▪ drive SCL to 0 if in need of more processing time

I2C: Interface Protocol

3 - 49

Example of MCU – sensor communication (data acquisition) via I2C
bus

I2C: Interface Protocol

3 - 50

I2C – STM32U585xx

•4 x I2C

•https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html

•→ Datasheet, page 21

https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html

3 - 51

I2C – Connected Sensors

•Ambient light sensor
•VEML6030

•Read=00100001 (21h)

•Write=00100000 (20h)

•ToF, gesture-detection
•VL53L5CXV0GC/1

•Read=01010011 (53h)

•Write=01010010 (52h)

•3D accelerometer and 3D gyroscope
•ISM330DHCX

•Read=11010101 (D5h)

•Write=11010100 (D4h)

•MEMS nano pressure sensor
•LPS22HH

•Read=10111011 (BBh)

•Write=10111010 (BAh)

•3-axis magnetometer
•IIS2MDCTR

•Read=00111101(3Dh)

•Write=00111100(3Ch)

•Humidity and temperature
•HTS221

•Read=10111111 (BFh)

•Write=10111110 (BEh)

•I2C2 @ VMCU

•PH4 / PH5

•Authentication and security
•STSAFE-A110

•Read=01000000 (40h)

•Write=01000001 (41h)

3 - 52

I2C – Connected Sensors Schematic

3 - 53

I2C – External Connection

•https://www.st.com/en/evaluation-tools/b-u585i-iot02a.html

•→ Documents → UM2839, page 10

CN14CN13

CN17 CN16

https://www.st.com/en/evaluation-tools/b-u585i-iot02a.html

3 - 54

I2C – Typical Datasheet - HTS221

•Address sometimes hidden in the text.

•What happens if I want to use one sensor twice

on the bus?

3 - 55

I2C – Typical Datasheet - HTS221

Configuration

Data

•Calibration

SPI – Serial Peripherals Interface

3 - 57

SPI: Serial Peripheral Interface - 1

▪ Introduced by Motorola (now Freescale Semiconductors) for the MC68HCxx line of
microcontrollers

▪ Use cases are generally similar to I2C

▪ Generally faster than I2C (up to several Mbit/s)

▪ Short-distance (i.e. on printed circuit boards)

▪ Single-master, multiple slave

▪ needs one chip select per slave device (no broadcast addressing)

▪ Full-duplex synchronous communication scheme

▪ master drives the clock (SCLK or SCK)

▪ clock polarity (i.e. write/read edges) and phase depend on specific application!

•NXP – Qualcomm (almost) - NXP

3 - 58

SPI: Serial Peripheral Interface - 2

▪ Based on two data and two control lines:

▪ MISO (master-in, slave-out data)

▪ MOSI (master-out, slave-in data)

▪ SCK (clock)

▪ CSN (chip select, one per slave – usually
active low)

▪ Names are not standard, beware! Some
possible alternatives:

▪ SDI (SPI data in) instead of MISO

▪ SDO (SPI data out) instead of MOSI

▪ SCLK, CLK, SPC, … instead of SCK

▪ CS, SS (slave select), SSN (slave select, active
low) ... instead of CSN

3 - 59

SPI: Serial Peripheral Interface - 3

▪ Full-duplex transfer: data is streamed between master and slave shift-registers / FIFO
buffers:

▪ the master pushes the content of its buffer to the slave via MOSI

▪ the slave pushes the content of its buffer to the master via MISO

▪ Processing / sensing / … happens in between (dashed line)

3 - 60

SPI: Interface Protocol - 1

▪ Four operating modes, varying by clock polarity (CPOL) and phase (CPHA):

▪ polarity sets the initial value of the SPI clock signal

▪ phase defines the edge at which MOSI is switched and the one at which MISO is sampled

3 - 61

SPI: Interface Protocol - 1

▪ Four operating modes, varying by clock polarity (CPOL) and phase (CPHA):

▪ polarity sets the initial value of the SPI clock signal

▪ phase defines the edge at which MOSI is switched and the one at which MISO is sampled

3 - 62

SPI: Interface Protocol - 1

▪ Four operating modes, varying by clock polarity (CPOL) and phase (CPHA):

▪ polarity sets the initial value of the SPI clock signal

▪ phase defines the edge at which MOSI is switched and the one at which MISO is sampled

3 - 63

SPI: Interface Protocol - 1

▪ Four operating modes, varying by clock polarity (CPOL) and phase (CPHA):

▪ polarity sets the initial value of the SPI clock signal

▪ phase defines the edge at which MOSI is switched and the one at which MISO is sampled

3 - 64

SPI: Interface Protocol - 2

▪ Master completely in charge of transfer

▪ no ack, no clock stretching contrarily to I2C

▪ More complex behavior than simple data streaming can be mapped on top of SPI
protocol

▪ e.g. command + address + data streaming

Saveral
names!

3 - 65

SPI – STM32U585xx

•3 x SPI •1 x SPI with dual OCTOSPI

•https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html

•→ Datasheet, page 21

https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html

3 - 66

SPI – Connected Sensors

12-Mbit Octo-SPI Flash
•MX25LM51245GXDI005

•OCTOSPI2

•SPI2 @ 3V3

•OCTOSPI1 @ 3V3

•OCTOSPI2 @ 3V3

Wifi Module
• EMW3080

• SPI2

12-Mbit Octo-SPI RAM
• APS6408L-3OB-BA

• Octo-SPI

3 - 67

SPI – Connected Modules and Memory

3 - 68

SPI – External Connection

•https://www.st.com/en/evaluation-tools/b-u585i-iot02a.html

•→ Documents → UM2839, page 10

CN14CN13

CN17 CN16

https://www.st.com/en/evaluation-tools/b-u585i-iot02a.html

3 - 69

• For point-to-point, SPI is simple
and efficient

• Less overhead than I2C due to lack of
addressing, plus SPI is full-duplex.

• For multiple slaves, each slave
needs separate slave select signal

• SPI requires more effort and more
hardware than I2C

• Quad-SPI also exists

• 4x the bandwidth, often used by
Flash drives

•SPI

•I2C

SPI vs I2C

UART - Universal Asynchronous Receiver-Transmitter

3 - 71

UART - 1

▪ Stands for Universal Asynchronous Receiver-Transmitter

▪ sometimes also found as USART (Universal Synchronous-Asynchronous Receiver
Transmitter)

▪ Used to interface MCUs with other computing devices:

▪ Communication with other processors, a PC (e.g. a serial terminal)

▪ Used to interface the microcontroller with others transmission bus as: RS232,
RS485, USB, CAN BUS, KNX, LonWorks ecc.

▪ Used to connect MCUs with modems and transceivers as telephone modems,
Bluetooth, Wi-Fi, GSM/GPRS/HDPSA

3 - 72

Software Development with STM32U585xx (ES-Lab)

host PC

bottom side

Target Device

STM32U585

Pmod & Arduino

headers

32.768 kHz

crystal

User Interface
& Sensors

Micro-B USB

connector

Status LED

RGB

Debug MCU

STLINK-V3E

ESD

protection

LDO

5 V, 3.3 V, 2.8 V

Power, UART, SWD to target

3 - 73

UART - 2

▪ Essentially a parallel2serial (TX), serial2parallel (RX) converter couple

▪ e.g. using shift registers for P2S conversion

▪ Asynchronous: no common clock shared

▪ Each device has its own local clock, typically running faster than the bit rate (e.g. 8x faster)

▪ The phase of the receiver clock is locked onto the edge of the transmitted data

▪ Highly configurable

▪ parity / no parity

▪ data framing (e.g number of stop bits, number of payload bits)

▪ simplex, full-duplex or half-duplex

3 - 74

UART - 2

▪ Essentially a parallel2serial (TX), serial2parallel (RX) converter couple

▪ e.g. using shift registers for P2S conversion

▪ Asynchronous: no common clock shared

▪ Each device has its own local clock, typically running faster than the bit rate (e.g.
8x faster)

▪ The phase of the receiver clock is locked onto the edge of the transmitted data

▪ Highly configurable

▪ parity / no parity

▪ data framing (e.g number of stop bits, number of payload bits)

▪ simplex, full-duplex or half-duplex

•!

3 - 75

UART: “baud rate” vs “bit rate”

▪ UART communication speed is defined by its symbol rate
measured in baud:

▪ 1 baud = 1 symbol per second

▪ in UART, a symbol has two values (0/1) -> 1 bit

▪ this number includes both data payload and protocol bits
(e.g. parity, framing) – this number is also called
“physical” or “gross” bit rate

▪ This can cause some confusion

▪ Some people use “bit rate” for UART when referring only
to payload bits

▪ In some devices (e.g. modems) one symbol

▪ might correspond to more bits -> baud rate is not the same
as gross bit rate

▪ Bottom line: to be 100% clear, always talk of baud rate
when referring to UART, and remember that in UART 1
symbol = 1 bit

•Ref. Wikipedia “Bit rate” page

3 - 76

UART: Interface Protocol

▪ In idle, the transmission line is driven to 1

3 - 77

UART: Interface Protocol

▪ The transfer begins with a start bit:

▪ the transmission line is driven to 0

•1 start bit

3 - 78

•1 start bit

UART: Interface Protocol

▪ Then, a symbol of 5 to 9 bits is transmitted:

▪ most often, 8 bits (1 ASCII character)

▪ the symbol size is defined by the application and known a-priori with respect to
the communication

3 - 79

•1 start bit •4-8 data bits •1 parity bit

UART: Interface Protocol

▪ One of the data bits can be used for parity:

▪ odd parity even parity

▪ in this case, 4-8 bits can be used for data •0 in the parity bit and there is an even number of
1's in the data bits. T

•Even parity where a 1-parity-bit is sent if there

are an even number of 1-bits

3 - 80

•1 start bit •4-8 data bits •1 parity bit •1-2 stop bits

UART: Interface Protocol

▪ Finally, 1-2 stop bits:

▪ Transmission line brought back to 1

▪ 1 or 2 stop bits depending on application

3 - 81

UART: Handshake

▪ The UART protocol can also include a handshake:

▪ request-to-send (RTS) signal from the MCU to the device means that the MCU
can accept new data

▪ clear-to-send (CTS) signal from the device to the MCU means that the device can
send new data

▪ signals have dual meaning if seen from the other point of view

▪ exchange happens when CTS and RTS are both asserted

3 - 82

UART

▪ The receiver runs an internal clock whose frequency is an exact multiple of the
expected bit rate.

▪ When a Start bit is detected, a counter begins to count clock cycles e.g. 8 cycles
until the midpoint of the anticipated Start bit is reached.

▪ The clock counter counts a
further 16 cycles, to the
middle of the first Data bit,
and so on until the Stop bit.

3 - 83

Transmission Rate
……

Clock subsampling:

• The clock subsampling block
is complex, as one tries to
match a large set of transmission
rates with a fixed input frequency.

Clock Source:

• USART_PCLK in the lab is then dived

to have the baud rate generator

• Example:

• Will be done in the LAB!

clock
source clock subsampling

serial
output

parallel-to-serial

data to be
transmitted

•https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html

•→ Reference Manual RM0456, page 2258

https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html

3 - 84

Memory-Mapped Device Access

buffer for received bits and bits that should be transmitted

• Configuration of Transmitter and Receiver must
match; otherwise, they can not communicate.

• Examples of configuration parameters:

• transmission rate (baud rate, i.e., symbols/s)

• LSB or MSB first

• number of bits per packet

• parity bit

• number of stop bits

• interrupt-based communication

• clock source

in our case: bit/s

•https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html

•→ Reference Manual RM0456, page 2337

https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html

3 - 85

Software Interface

Part of C program that prints one byte to a UART terminal on the host PC:

data structure uartConfig
contains the configuration
of the UART

Use HAL_UART_Init to write the configuration
registers of the instance USART2

start UART

USART2 defines the start address for the
USART2 memory block:

0x4000_4400 (for non-secure)

3 - 86

SPI – STM32U585xx

•3 x SPI •1 x SPI with dual OCTOSPI

•https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html

•→ Datasheet, page 21

https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html

3 - 87

UART – STM32U5

•3x USART 2x UART and 1x LPUART

•https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html

•→ Datasheet, page 21

https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html

3 - 88

UART – STM32U585xx

•https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html

•→ Datasheet, page 84

https://www.st.com/en/microcontrollers-microprocessors/stm32u585ai.html

3 - 89

UART – Connected Modules

•Bluetooth Module

•STM32WB5MMGH6TR

•UART4

•DEBUGING CONNECTION
•ST-LINK

•UART1

3 - 90

UART – Connected Module

3 - 91

UART – External Connection

•https://www.st.com/en/evaluation-tools/b-u585i-iot02a.html

•→ Documents → UM2839, page 10

CN14CN13

CN17 CN16

https://www.st.com/en/evaluation-tools/b-u585i-iot02a.html

3 - 92

The next-generation: I3C example

▪ An evolution of I2C proposed by the MIPI
alliance (2016/7)

▪ Designed to fit applications currently using I2C,
SPI, UART

▪ Many operating modes, I2C backward-
compatibility also supported

▪ without some of the most «exotic» features
such as SCL stretching

▪ supporting also (mainly) push-pull drivers

▪ Targets high data rate and energy efficiency

Version 1.0 Specification for I3C

23-Dec-2016

 Copyright © 2016–2017 MIPI Alliance, Inc. 1

 Public Release Edition

1 Introduction

The proliferation of sensors in mobile wireless and mobile-influenced products has created significant design 1

challenges. Because there are no consistent methods for interfacing physical sensors, Device and platform 2

designers are faced with digital interface fragmentation that includes I2C, SPI, and UART among others. 3

In addition to the main interface other signals may be needed, such as dedicated interrupts, chip select signals, 4

and enable and sleep signals. This increases the required number of Host GPIOs, and that in turn drives up 5

system cost with more Host package pins and more PCB layers. 6

As time passes and the number of sensors increases, this situation is becoming increasingly difficult to 7

support and manage. 8

The MIPI I3C interface has been developed to ease sensor system design architectures in mobile wireless 9

products by providing a fast, low cost, low power, two-wire digital interface for sensors. 10

Out-of-Band Interrupt

I3C Bus
(SDA & SCL)

I3C Main Master

I3C Secondary Master

I3C Slave

I
2
C Slave

Host Controller

May be SDR-Only

Legacy

I
2
C Sensor(s)

I3C Sensor(s)

May be SDR-Only

I3C Smart Sensor(s) /

Hub(s) / Engine(s)

May be SDR-Only

 11

Figure 1 I3C System Diagram 12

3 - 93

What did you Learn?

▪ Interrupts are crucial for

▪ Work in parallel

▪ Duty cycling

▪ Energy Efficiency

▪ External world Interface

▪ Serial ports

▪ SPI

▪ I2C

▪ UART

▪ This is today used in real embedded systems

